Перевод: с английского на все языки

со всех языков на английский

Representations and understanding

  • 1 Bibliography

     ■ Aitchison, J. (1987). Noam Chomsky: Consensus and controversy. New York: Falmer Press.
     ■ Anderson, J. R. (1980). Cognitive psychology and its implications. San Francisco: W. H. Freeman.
     ■ Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.
     ■ Anderson, J. R. (1995). Cognitive psychology and its implications (4th ed.). New York: W. H. Freeman.
     ■ Archilochus (1971). In M. L. West (Ed.), Iambi et elegi graeci (Vol. 1). Oxford: Oxford University Press.
     ■ Armstrong, D. M. (1990). The causal theory of the mind. In W. G. Lycan (Ed.), Mind and cognition: A reader (pp. 37-47). Cambridge, MA: Basil Blackwell. (Originally published in 1981 in The nature of mind and other essays, Ithaca, NY: University Press).
     ■ Atkins, P. W. (1992). Creation revisited. Oxford: W. H. Freeman & Company.
     ■ Austin, J. L. (1962). How to do things with words. Cambridge, MA: Harvard University Press.
     ■ Bacon, F. (1878). Of the proficience and advancement of learning divine and human. In The works of Francis Bacon (Vol. 1). Cambridge, MA: Hurd & Houghton.
     ■ Bacon, R. (1928). Opus majus (Vol. 2). R. B. Burke (Trans.). Philadelphia, PA: University of Pennsylvania Press.
     ■ Bar-Hillel, Y. (1960). The present status of automatic translation of languages. In F. L. Alt (Ed.), Advances in computers (Vol. 1). New York: Academic Press.
     ■ Barr, A., & E. A. Feigenbaum (Eds.) (1981). The handbook of artificial intelligence (Vol. 1). Reading, MA: Addison-Wesley.
     ■ Barr, A., & E. A. Feigenbaum (Eds.) (1982). The handbook of artificial intelligence (Vol. 2). Los Altos, CA: William Kaufman.
     ■ Barron, F. X. (1963). The needs for order and for disorder as motives in creative activity. In C. W. Taylor & F. X. Barron (Eds.), Scientific creativity: Its rec ognition and development (pp. 153-160). New York: Wiley.
     ■ Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge: Cambridge University Press.
     ■ Bartley, S. H. (1969). Principles of perception. London: Harper & Row.
     ■ Barzun, J. (1959). The house of intellect. New York: Harper & Row.
     ■ Beach, F. A., D. O. Hebb, C. T. Morgan & H. W. Nissen (Eds.) (1960). The neu ropsychology of Lashley. New York: McGraw-Hill.
     ■ Berkeley, G. (1996). Principles of human knowledge: Three Dialogues. Oxford: Oxford University Press. (Originally published in 1710.)
     ■ Berlin, I. (1953). The hedgehog and the fox: An essay on Tolstoy's view of history. NY: Simon & Schuster.
     ■ Bierwisch, J. (1970). Semantics. In J. Lyons (Ed.), New horizons in linguistics. Baltimore: Penguin Books.
     ■ Black, H. C. (1951). Black's law dictionary. St. Paul, MN: West Publishing.
     ■ Bobrow, D. G., & D. A. Norman (1975). Some principles of memory schemata. In D. G. Bobrow & A. Collins (Eds.), Representation and understanding: Stud ies in Cognitive Science (pp. 131-149). New York: Academic Press.
     ■ Boden, M. A. (1977). Artificial intelligence and natural man. New York: Basic Books.
     ■ Boden, M. A. (1981). Minds and mechanisms. Ithaca, NY: Cornell University Press.
     ■ Boden, M. A. (1990a). The creative mind: Myths and mechanisms. London: Cardinal.
     ■ Boden, M. A. (1990b). The philosophy of artificial intelligence. Oxford: Oxford University Press.
     ■ Boden, M. A. (1994). Precis of The creative mind: Myths and mechanisms. Behavioral and brain sciences 17, 519-570.
     ■ Boden, M. (1996). Creativity. In M. Boden (Ed.), Artificial Intelligence (2nd ed.). San Diego: Academic Press.
     ■ Bolter, J. D. (1984). Turing's man: Western culture in the computer age. Chapel Hill, NC: University of North Carolina Press.
     ■ Bolton, N. (1972). The psychology of thinking. London: Methuen.
     ■ Bourne, L. E. (1973). Some forms of cognition: A critical analysis of several papers. In R. Solso (Ed.), Contemporary issues in cognitive psychology (pp. 313324). Loyola Symposium on Cognitive Psychology (Chicago 1972). Washington, DC: Winston.
     ■ Bransford, J. D., N. S. McCarrell, J. J. Franks & K. E. Nitsch (1977). Toward unexplaining memory. In R. Shaw & J. D. Bransford (Eds.), Perceiving, acting, and knowing (pp. 431-466). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Breger, L. (1981). Freud's unfinished journey. London: Routledge & Kegan Paul.
     ■ Brehmer, B. (1986). In one word: Not from experience. In H. R. Arkes & K. Hammond (Eds.), Judgment and decision making: An interdisciplinary reader (pp. 705-719). Cambridge: Cambridge University Press.
     ■ Bresnan, J. (1978). A realistic transformational grammar. In M. Halle, J. Bresnan & G. A. Miller (Eds.), Linguistic theory and psychological reality (pp. 1-59). Cambridge, MA: MIT Press.
     ■ Brislin, R. W., W. J. Lonner & R. M. Thorndike (Eds.) (1973). Cross- cultural research methods. New York: Wiley.
     ■ Bronowski, J. (1977). A sense of the future: Essays in natural philosophy. P. E. Ariotti with R. Bronowski (Eds.). Cambridge, MA: MIT Press.
     ■ Bronowski, J. (1978). The origins of knowledge and imagination. New Haven, CT: Yale University Press.
     ■ Brown, R. O. (1973). A first language: The early stages. Cambridge, MA: Harvard University Press.
     ■ Brown, T. (1970). Lectures on the philosophy of the human mind. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 330-387). New York: Random House/Modern Library.
     ■ Bruner, J. S., J. Goodnow & G. Austin (1956). A study of thinking. New York: Wiley.
     ■ Campbell, J. (1982). Grammatical man: Information, entropy, language, and life. New York: Simon & Schuster.
     ■ Campbell, J. (1989). The improbable machine. New York: Simon & Schuster.
     ■ Carlyle, T. (1966). On heroes, hero- worship and the heroic in history. Lincoln: University of Nebraska Press. (Originally published in 1841.)
     ■ Carnap, R. (1959). The elimination of metaphysics through logical analysis of language [Ueberwindung der Metaphysik durch logische Analyse der Sprache]. In A. J. Ayer (Ed.), Logical positivism (pp. 60-81) A. Pap (Trans). New York: Free Press. (Originally published in 1932.)
     ■ Cassirer, E. (1946). Language and myth. New York: Harper and Brothers. Reprinted. New York: Dover Publications, 1953.
     ■ Cattell, R. B., & H. J. Butcher (1970). Creativity and personality. In P. E. Vernon (Ed.), Creativity. Harmondsworth, England: Penguin Books.
     ■ Caudill, M., & C. Butler (1990). Naturally intelligent systems. Cambridge, MA: MIT Press/Bradford Books.
     ■ Chandrasekaran, B. (1990). What kind of information processing is intelligence? A perspective on AI paradigms and a proposal. In D. Partridge & R. Wilks (Eds.), The foundations of artificial intelligence: A sourcebook (pp. 14-46). Cambridge: Cambridge University Press.
     ■ Charniak, E., & McDermott, D. (1985). Introduction to artificial intelligence. Reading, MA: Addison-Wesley.
     ■ Chase, W. G., & H. A. Simon (1988). The mind's eye in chess. In A. Collins & E. E. Smith (Eds.), Readings in cognitive science: A perspective from psychology and artificial intelligence (pp. 461-493). San Mateo, CA: Kaufmann.
     ■ Cheney, D. L., & R. M. Seyfarth (1990). How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press.
     ■ Chi, M.T.H., R. Glaser & E. Rees (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7-73). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Chomsky, N. (1957). Syntactic structures. The Hague: Mouton. Janua Linguarum.
     ■ Chomsky, N. (1964). A transformational approach to syntax. In J. A. Fodor & J. J. Katz (Eds.), The structure of language: Readings in the philosophy of lan guage (pp. 211-245). Englewood Cliffs, NJ: Prentice-Hall.
     ■ Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.
     ■ Chomsky, N. (1972). Language and mind (enlarged ed.). New York: Harcourt Brace Jovanovich.
     ■ Chomsky, N. (1979). Language and responsibility. New York: Pantheon.
     ■ Chomsky, N. (1986). Knowledge of language: Its nature, origin and use. New York: Praeger Special Studies.
     ■ Churchland, P. (1979). Scientific realism and the plasticity of mind. New York: Cambridge University Press.
     ■ Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.
     ■ Churchland, P. S. (1986). Neurophilosophy. Cambridge, MA: MIT Press/Bradford Books.
     ■ Clark, A. (1996). Philosophical Foundations. In M. A. Boden (Ed.), Artificial in telligence (2nd ed.). San Diego: Academic Press.
     ■ Clark, H. H., & T. B. Carlson (1981). Context for comprehension. In J. Long & A. Baddeley (Eds.), Attention and performance (Vol. 9, pp. 313-330). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Clarke, A. C. (1984). Profiles of the future: An inquiry into the limits of the possible. New York: Holt, Rinehart & Winston.
     ■ Claxton, G. (1980). Cognitive psychology: A suitable case for what sort of treatment? In G. Claxton (Ed.), Cognitive psychology: New directions (pp. 1-25). London: Routledge & Kegan Paul.
     ■ Code, M. (1985). Order and organism. Albany, NY: State University of New York Press.
     ■ Collingwood, R. G. (1972). The idea of history. New York: Oxford University Press.
     ■ Coopersmith, S. (1967). The antecedents of self- esteem. San Francisco: W. H. Freeman.
     ■ Copland, A. (1952). Music and imagination. London: Oxford University Press.
     ■ Coren, S. (1994). The intelligence of dogs. New York: Bantam Books.
     ■ Cottingham, J. (Ed.) (1996). Western philosophy: An anthology. Oxford: Blackwell Publishers.
     ■ Cox, C. (1926). The early mental traits of three hundred geniuses. Stanford, CA: Stanford University Press.
     ■ Craik, K.J.W. (1943). The nature of explanation. Cambridge: Cambridge University Press.
     ■ Cronbach, L. J. (1990). Essentials of psychological testing (5th ed.). New York: HarperCollins.
     ■ Cronbach, L. J., & R. E. Snow (1977). Aptitudes and instructional methods. New York: Irvington. Paperback edition, 1981.
     ■ Csikszentmihalyi, M. (1993). The evolving self. New York: Harper Perennial.
     ■ Culler, J. (1976). Ferdinand de Saussure. New York: Penguin Books.
     ■ Curtius, E. R. (1973). European literature and the Latin Middle Ages. W. R. Trask (Trans.). Princeton, NJ: Princeton University Press.
     ■ D'Alembert, J.L.R. (1963). Preliminary discourse to the encyclopedia of Diderot. R. N. Schwab (Trans.). Indianapolis: Bobbs-Merrill.
     ■ Damasio, A. (1994). Descartes' error: Emotion, reason, and the human brain. New York: Avon.
     ■ Dampier, W. C. (1966). A history of modern science. Cambridge: Cambridge University Press.
     ■ Darwin, C. (1911). The life and letters of Charles Darwin (Vol. 1). Francis Darwin (Ed.). New York: Appleton.
     ■ Davidson, D. (1970) Mental events. In L. Foster & J. W. Swanson (Eds.), Experience and theory (pp. 79-101). Amherst: University of Massachussetts Press.
     ■ Davies, P. (1995). About time: Einstein's unfinished revolution. New York: Simon & Schuster/Touchstone.
     ■ Davis, R., & J. J. King (1977). An overview of production systems. In E. Elcock & D. Michie (Eds.), Machine intelligence 8. Chichester, England: Ellis Horwood.
     ■ Davis, R., & D. B. Lenat (1982). Knowledge- based systems in artificial intelligence. New York: McGraw-Hill.
     ■ Dawkins, R. (1982). The extended phenotype: The gene as the unit of selection. Oxford: W. H. Freeman.
     ■ deKleer, J., & J. S. Brown (1983). Assumptions and ambiguities in mechanistic mental models (1983). In D. Gentner & A. L. Stevens (Eds.), Mental modes (pp. 155-190). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Dennett, D. C. (1978a). Brainstorms: Philosophical essays on mind and psychology. Montgomery, VT: Bradford Books.
     ■ Dennett, D. C. (1978b). Toward a cognitive theory of consciousness. In D. C. Dennett, Brainstorms: Philosophical Essays on Mind and Psychology. Montgomery, VT: Bradford Books.
     ■ Dennett, D. C. (1995). Darwin's dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster/Touchstone.
     ■ Descartes, R. (1897-1910). Traite de l'homme. In Oeuvres de Descartes (Vol. 11, pp. 119-215). Paris: Charles Adam & Paul Tannery. (Originally published in 1634.)
     ■ Descartes, R. (1950). Discourse on method. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1637.)
     ■ Descartes, R. (1951). Meditation on first philosophy. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1641.)
     ■ Descartes, R. (1955). The philosophical works of Descartes. E. S. Haldane and G.R.T. Ross (Trans.). New York: Dover. (Originally published in 1911 by Cambridge University Press.)
     ■ Descartes, R. (1967). Discourse on method (Pt. V). In E. S. Haldane and G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 106-118). Cambridge: Cambridge University Press. (Originally published in 1637.)
     ■ Descartes, R. (1970a). Discourse on method. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 181-200). Cambridge: Cambridge University Press. (Originally published in 1637.)
     ■ Descartes, R. (1970b). Principles of philosophy. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 178-291). Cambridge: Cambridge University Press. (Originally published in 1644.)
     ■ Descartes, R. (1984). Meditations on first philosophy. In J. Cottingham, R. Stoothoff & D. Murduch (Trans.), The philosophical works of Descartes (Vol. 2). Cambridge: Cambridge University Press. (Originally published in 1641.)
     ■ Descartes, R. (1986). Meditations on first philosophy. J. Cottingham (Trans.). Cambridge: Cambridge University Press. (Originally published in 1641 as Med itationes de prima philosophia.)
     ■ deWulf, M. (1956). An introduction to scholastic philosophy. Mineola, NY: Dover Books.
     ■ Dixon, N. F. (1981). Preconscious processing. London: Wiley.
     ■ Doyle, A. C. (1986). The Boscombe Valley mystery. In Sherlock Holmes: The com plete novels and stories (Vol. 1). New York: Bantam.
     ■ Dreyfus, H., & S. Dreyfus (1986). Mind over machine. New York: Free Press.
     ■ Dreyfus, H. L. (1972). What computers can't do: The limits of artificial intelligence (revised ed.). New York: Harper & Row.
     ■ Dreyfus, H. L., & S. E. Dreyfus (1986). Mind over machine: The power of human intuition and expertise in the era of the computer. New York: Free Press.
     ■ Edelman, G. M. (1992). Bright air, brilliant fire: On the matter of the mind. New York: Basic Books.
     ■ Ehrenzweig, A. (1967). The hidden order of art. London: Weidenfeld & Nicolson.
     ■ Einstein, A., & L. Infeld (1938). The evolution of physics. New York: Simon & Schuster.
     ■ Eisenstein, S. (1947). Film sense. New York: Harcourt, Brace & World.
     ■ Everdell, W. R. (1997). The first moderns. Chicago: University of Chicago Press.
     ■ Eysenck, M. W. (1977). Human memory: Theory, research and individual difference. Oxford: Pergamon.
     ■ Eysenck, M. W. (1982). Attention and arousal: Cognition and performance. Berlin: Springer.
     ■ Eysenck, M. W. (1984). A handbook of cognitive psychology. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Fancher, R. E. (1979). Pioneers of psychology. New York: W. W. Norton.
     ■ Farrell, B. A. (1981). The standing of psychoanalysis. New York: Oxford University Press.
     ■ Feldman, D. H. (1980). Beyond universals in cognitive development. Norwood, NJ: Ablex.
     ■ Fetzer, J. H. (1996). Philosophy and cognitive science (2nd ed.). New York: Paragon House.
     ■ Finke, R. A. (1990). Creative imagery: Discoveries and inventions in visualization. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Flanagan, O. (1991). The science of the mind. Cambridge MA: MIT Press/Bradford Books.
     ■ Fodor, J. (1983). The modularity of mind. Cambridge, MA: MIT Press/Bradford Books.
     ■ Frege, G. (1972). Conceptual notation. T. W. Bynum (Trans.). Oxford: Clarendon Press. (Originally published in 1879.)
     ■ Frege, G. (1979). Logic. In H. Hermes, F. Kambartel & F. Kaulbach (Eds.), Gottlob Frege: Posthumous writings. Chicago: University of Chicago Press. (Originally published in 1879-1891.)
     ■ Freud, S. (1959). Creative writers and day-dreaming. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 9, pp. 143-153). London: Hogarth Press.
     ■ Freud, S. (1966). Project for a scientific psychology. In J. Strachey (Ed.), The stan dard edition of the complete psychological works of Sigmund Freud (Vol. 1, pp. 295-398). London: Hogarth Press. (Originally published in 1950 as Aus den AnfaЁngen der Psychoanalyse, in London by Imago Publishing.)
     ■ Freud, S. (1976). Lecture 18-Fixation to traumas-the unconscious. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 16, p. 285). London: Hogarth Press.
     ■ Galileo, G. (1990). Il saggiatore [The assayer]. In S. Drake (Ed.), Discoveries and opinions of Galileo. New York: Anchor Books. (Originally published in 1623.)
     ■ Gassendi, P. (1970). Letter to Descartes. In "Objections and replies." In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 2, pp. 179-240). Cambridge: Cambridge University Press. (Originally published in 1641.)
     ■ Gazzaniga, M. S. (1988). Mind matters: How mind and brain interact to create our conscious lives. Boston: Houghton Mifflin in association with MIT Press/Bradford Books.
     ■ Genesereth, M. R., & N. J. Nilsson (1987). Logical foundations of artificial intelligence. Palo Alto, CA: Morgan Kaufmann.
     ■ Ghiselin, B. (1952). The creative process. New York: Mentor.
     ■ Ghiselin, B. (1985). The creative process. Berkeley, CA: University of California Press. (Originally published in 1952.)
     ■ Gilhooly, K. J. (1996). Thinking: Directed, undirected and creative (3rd ed.). London: Academic Press.
     ■ Glass, A. L., K. J. Holyoak & J. L. Santa (1979). Cognition. Reading, MA: AddisonWesley.
     ■ Goody, J. (1977). The domestication of the savage mind. Cambridge: Cambridge University Press.
     ■ Gruber, H. E. (1980). Darwin on man: A psychological study of scientific creativity (2nd ed.). Chicago: University of Chicago Press.
     ■ Gruber, H. E., & S. Davis (1988). Inching our way up Mount Olympus: The evolving systems approach to creative thinking. In R. J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives. Cambridge: Cambridge University Press.
     ■ Guthrie, E. R. (1972). The psychology of learning. New York: Harper. (Originally published in 1935.)
     ■ Habermas, J. (1972). Knowledge and human interests. Boston: Beacon Press.
     ■ Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.
     ■ Hand, D. J. (1985). Artificial intelligence and psychiatry. Cambridge: Cambridge University Press.
     ■ Harris, M. (1981). The language myth. London: Duckworth.
     ■ Haugeland, J. (Ed.) (1981). Mind design: Philosophy, psychology, artificial intelligence. Cambridge, MA: MIT Press/Bradford Books.
     ■ Haugeland, J. (1981a). The nature and plausibility of cognitivism. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 243-281). Cambridge, MA: MIT Press.
     ■ Haugeland, J. (1981b). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 1-34). Cambridge, MA: MIT Press/Bradford Books.
     ■ Haugeland, J. (1985). Artificial intelligence: The very idea. Cambridge, MA: MIT Press.
     ■ Hawkes, T. (1977). Structuralism and semiotics. Berkeley: University of California Press.
     ■ Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley.
     ■ Hebb, D. O. (1958). A textbook of psychology. Philadelphia: Saunders.
     ■ Hegel, G.W.F. (1910). The phenomenology of mind. J. B. Baille (Trans.). London: Sonnenschein. (Originally published as Phaenomenologie des Geistes, 1807.)
     ■ Heisenberg, W. (1958). Physics and philosophy. New York: Harper & Row.
     ■ Hempel, C. G. (1966). Philosophy of natural science. Englewood Cliffs, NJ: PrenticeHall.
     ■ Herman, A. (1997). The idea of decline in Western history. New York: Free Press.
     ■ Herrnstein, R. J., & E. G. Boring (Eds.) (1965). A source book in the history of psy chology. Cambridge, MA: Harvard University Press.
     ■ Herzmann, E. (1964). Mozart's creative process. In P. H. Lang (Ed.), The creative world of Mozart (pp. 17-30). London: Oldbourne Press.
     ■ Hilgard, E. R. (1957). Introduction to psychology. London: Methuen.
     ■ Hobbes, T. (1651). Leviathan. London: Crooke.
     ■ Hofstadter, D. R. (1979). Goedel, Escher, Bach: An eternal golden braid. New York: Basic Books.
     ■ Holliday, S. G., & M. J. Chandler (1986). Wisdom: Explorations in adult competence. Basel, Switzerland: Karger.
     ■ Horn, J. L. (1986). In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 3). Hillsdale, NJ: Erlbaum.
     ■ Hull, C. (1943). Principles of behavior. New York: Appleton-Century-Crofts.
     ■ Hume, D. (1955). An inquiry concerning human understanding. New York: Liberal Arts Press. (Originally published in 1748.)
     ■ Hume, D. (1975). An enquiry concerning human understanding. In L. A. SelbyBigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (Spelling and punctuation revised.) (Originally published in 1748.)
     ■ Hume, D. (1978). A treatise of human nature. L. A. Selby-Bigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (With some modifications of spelling and punctuation.) (Originally published in 1690.)
     ■ Hunt, E. (1973). The memory we must have. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language. (pp. 343-371) San Francisco: W. H. Freeman.
     ■ Husserl, E. (1960). Cartesian meditations. The Hague: Martinus Nijhoff.
     ■ Inhelder, B., & J. Piaget (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books. (Originally published in 1955 as De la logique de l'enfant a` la logique de l'adolescent. [Paris: Presses Universitaire de France])
     ■ James, W. (1890a). The principles of psychology (Vol. 1). New York: Dover Books.
     ■ James, W. (1890b). The principles of psychology. New York: Henry Holt.
     ■ Jevons, W. S. (1900). The principles of science (2nd ed.). London: Macmillan.
     ■ Johnson, G. (1986). Machinery of the mind: Inside the new science of artificial intelli gence. New York: Random House.
     ■ Johnson, M. L. (1988). Mind, language, machine. New York: St. Martin's Press.
     ■ Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.
     ■ Johnson-Laird, P. N. (1988). The computer and the mind: An introduction to cognitive science. Cambridge, MA: Harvard University Press.
     ■ Jones, E. (1961). The life and work of Sigmund Freud. L. Trilling & S. Marcus (Eds.). London: Hogarth.
     ■ Jones, R. V. (1985). Complementarity as a way of life. In A. P. French & P. J. Kennedy (Eds.), Niels Bohr: A centenary volume. Cambridge, MA: Harvard University Press.
     ■ Kant, I. (1933). Critique of Pure Reason (2nd ed.). N. K. Smith (Trans.). London: Macmillan. (Originally published in 1781 as Kritik der reinen Vernunft.)
     ■ Kant, I. (1891). Solution of the general problems of the Prolegomena. In E. Belfort (Trans.), Kant's Prolegomena. London: Bell. (With minor modifications.) (Originally published in 1783.)
     ■ Katona, G. (1940). Organizing and memorizing: Studies in the psychology of learning and teaching. New York: Columbia University Press.
     ■ Kaufman, A. S. (1979). Intelligent testing with the WISC-R. New York: Wiley.
     ■ Koestler, A. (1964). The act of creation. New York: Arkana (Penguin).
     ■ Kohlberg, L. (1971). From is to ought. In T. Mischel (Ed.), Cognitive development and epistemology. (pp. 151-235) New York: Academic Press.
     ■ KoЁhler, W. (1925). The mentality of apes. New York: Liveright.
     ■ KoЁhler, W. (1927). The mentality of apes (2nd ed.). Ella Winter (Trans.). London: Routledge & Kegan Paul.
     ■ KoЁhler, W. (1930). Gestalt psychology. London: G. Bell.
     ■ KoЁhler, W. (1947). Gestalt psychology. New York: Liveright.
     ■ KoЁhler, W. (1969). The task of Gestalt psychology. Princeton, NJ: Princeton University Press.
     ■ Kuhn, T. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.
     ■ Langer, E. J. (1989). Mindfulness. Reading, MA: Addison-Wesley.
     ■ Langer, S. (1962). Philosophical sketches. Baltimore: Johns Hopkins University Press.
     ■ Langley, P., H. A. Simon, G. L. Bradshaw & J. M. Zytkow (1987). Scientific dis covery: Computational explorations of the creative process. Cambridge, MA: MIT Press.
     ■ Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior, the Hixon Symposium (pp. 112-146) New York: Wiley.
     ■ LeDoux, J. E., & W. Hirst (1986). Mind and brain: Dialogues in cognitive neuroscience. Cambridge: Cambridge University Press.
     ■ Lehnert, W. (1978). The process of question answering. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Leiber, J. (1991). Invitation to cognitive science. Oxford: Blackwell.
     ■ Lenat, D. B., & G. Harris (1978). Designing a rule system that searches for scientific discoveries. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern directed inference systems (pp. 25-52) New York: Academic Press.
     ■ Levenson, T. (1995). Measure for measure: A musical history of science. New York: Touchstone. (Originally published in 1994.)
     ■ Leґvi-Strauss, C. (1963). Structural anthropology. C. Jacobson & B. Grundfest Schoepf (Trans.). New York: Basic Books. (Originally published in 1958.)
     ■ Levine, M. W., & J. M. Schefner (1981). Fundamentals of sensation and perception. London: Addison-Wesley.
     ■ Lewis, C. I. (1946). An analysis of knowledge and valuation. LaSalle, IL: Open Court.
     ■ Lighthill, J. (1972). A report on artificial intelligence. Unpublished manuscript, Science Research Council.
     ■ Lipman, M., A. M. Sharp & F. S. Oscanyan (1980). Philosophy in the classroom. Philadelphia: Temple University Press.
     ■ Lippmann, W. (1965). Public opinion. New York: Free Press. (Originally published in 1922.)
     ■ Locke, J. (1956). An essay concerning human understanding. Chicago: Henry Regnery Co. (Originally published in 1690.)
     ■ Locke, J. (1975). An essay concerning human understanding. P. H. Nidditch (Ed.). Oxford: Clarendon. (Originally published in 1690.) (With spelling and punctuation modernized and some minor modifications of phrasing.)
     ■ Lopate, P. (1994). The art of the personal essay. New York: Doubleday/Anchor Books.
     ■ Lorimer, F. (1929). The growth of reason. London: Kegan Paul. Machlup, F., & U. Mansfield (Eds.) (1983). The study of information. New York: Wiley.
     ■ Manguel, A. (1996). A history of reading. New York: Viking.
     ■ Margolis, H. (1987). Patterns, thinking, and cognition. Chicago: University of Chicago Press.
     ■ Markey, J. F. (1928). The symbolic process. London: Kegan Paul.
     ■ Martin, R. M. (1969). On Ziff's "Natural and formal languages." In S. Hook (Ed.), Language and philosophy: A symposium (pp. 249-263). New York: New York University Press.
     ■ Mazlish, B. (1993). The fourth discontinuity: the co- evolution of humans and machines. New Haven, CT: Yale University Press.
     ■ McCarthy, J., & P. J. Hayes (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine intelligence 4. Edinburgh: Edinburgh University Press.
     ■ McClelland, J. L., D. E. Rumelhart & G. E. Hinton (1986). The appeal of parallel distributed processing. In D. E. Rumelhart, J. L. McClelland & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the mi crostructure of cognition (Vol. 1, pp. 3-40). Cambridge, MA: MIT Press/ Bradford Books.
     ■ McCorduck, P. (1979). Machines who think. San Francisco: W. H. Freeman.
     ■ McLaughlin, T. (1970). Music and communication. London: Faber & Faber.
     ■ Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review 69, 431-436.
     ■ Meehl, P. E., & C. J. Golden (1982). Taxometric methods. In Kendall, P. C., & Butcher, J. N. (Eds.), Handbook of research methods in clinical psychology (pp. 127-182). New York: Wiley.
     ■ Mehler, J., E.C.T. Walker & M. Garrett (Eds.) (1982). Perspectives on mental rep resentation: Experimental and theoretical studies of cognitive processes and ca pacities. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Mill, J. S. (1900). A system of logic, ratiocinative and inductive: Being a connected view of the principles of evidence and the methods of scientific investigation. London: Longmans, Green.
     ■ Miller, G. A. (1979, June). A very personal history. Talk to the Cognitive Science Workshop, Cambridge, MA.
     ■ Miller, J. (1983). States of mind. New York: Pantheon Books.
     ■ Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The psychology of computer vision (pp. 211-277). New York: McGrawHill.
     ■ Minsky, M., & S. Papert (1973). Artificial intelligence. Condon Lectures, Oregon State System of Higher Education, Eugene, Oregon.
     ■ Minsky, M. L. (1986). The society of mind. New York: Simon & Schuster.
     ■ Mischel, T. (1976). Psychological explanations and their vicissitudes. In J. K. Cole & W. J. Arnold (Eds.), Nebraska Symposium on motivation (Vol. 23). Lincoln, NB: University of Nebraska Press.
     ■ Morford, M.P.O., & R. J. Lenardon (1995). Classical mythology (5th ed.). New York: Longman.
     ■ Murdoch, I. (1954). Under the net. New York: Penguin.
     ■ Nagel, E. (1959). Methodological issues in psychoanalytic theory. In S. Hook (Ed.), Psychoanalysis, scientific method, and philosophy: A symposium. New York: New York University Press.
     ■ Nagel, T. (1979). Mortal questions. London: Cambridge University Press.
     ■ Nagel, T. (1986). The view from nowhere. Oxford: Oxford University Press.
     ■ Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.
     ■ Neisser, U. (1972). Changing conceptions of imagery. In P. W. Sheehan (Ed.), The function and nature of imagery (pp. 233-251). London: Academic Press.
     ■ Neisser, U. (1976). Cognition and reality. San Francisco: W. H. Freeman.
     ■ Neisser, U. (1978). Memory: What are the important questions? In M. M. Gruneberg, P. E. Morris & R. N. Sykes (Eds.), Practical aspects of memory (pp. 3-24). London: Academic Press.
     ■ Neisser, U. (1979). The concept of intelligence. In R. J. Sternberg & D. K. Detterman (Eds.), Human intelligence: Perspectives on its theory and measurement (pp. 179-190). Norwood, NJ: Ablex.
     ■ Nersessian, N. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3-44). Minneapolis: University of Minnesota Press.
     ■ Newell, A. (1973a). Artificial intelligence and the concept of mind. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 1-60). San Francisco: W. H. Freeman.
     ■ Newell, A. (1973b). You can't play 20 questions with nature and win. In W. G. Chase (Ed.), Visual information processing (pp. 283-310). New York: Academic Press.
     ■ Newell, A., & H. A. Simon (1963). GPS: A program that simulates human thought. In E. A. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 279-293). New York & McGraw-Hill.
     ■ Newell, A., & H. A. Simon (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.
     ■ Nietzsche, F. (1966). Beyond good and evil. W. Kaufmann (Trans.). New York: Vintage. (Originally published in 1885.)
     ■ Nilsson, N. J. (1971). Problem- solving methods in artificial intelligence. New York: McGraw-Hill.
     ■ Nussbaum, M. C. (1978). Aristotle's Princeton University Press. De Motu Anamalium. Princeton, NJ:
     ■ Oersted, H. C. (1920). Thermo-electricity. In Kirstine Meyer (Ed.), H. C. Oersted, Natuurvidenskabelige Skrifter (Vol. 2). Copenhagen: n.p. (Originally published in 1830 in The Edinburgh encyclopaedia.)
     ■ Ong, W. J. (1982). Orality and literacy: The technologizing of the word. London: Methuen.
     ■ Onians, R. B. (1954). The origins of European thought. Cambridge, MA: Cambridge University Press.
     ■ Osgood, C. E. (1960). Method and theory in experimental psychology. New York: Oxford University Press. (Originally published in 1953.)
     ■ Osgood, C. E. (1966). Language universals and psycholinguistics. In J. H. Greenberg (Ed.), Universals of language (2nd ed., pp. 299-322). Cambridge, MA: MIT Press.
     ■ Palmer, R. E. (1969). Hermeneutics. Evanston, IL: Northwestern University Press.
     ■ Peirce, C. S. (1934). Some consequences of four incapacities-Man, a sign. In C. Hartsborne & P. Weiss (Eds.), Collected papers of Charles Saunders Peirce (Vol. 5, pp. 185-189). Cambridge, MA: Harvard University Press.
     ■ Penfield, W. (1959). In W. Penfield & L. Roberts, Speech and brain mechanisms. Princeton, NJ: Princeton University Press.
     ■ Penrose, R. (1994). Shadows of the mind: A search for the missing science of conscious ness. Oxford: Oxford University Press.
     ■ Perkins, D. N. (1981). The mind's best work. Cambridge, MA: Harvard University Press.
     ■ Peterfreund, E. (1986). The heuristic approach to psychoanalytic therapy. In
     ■ J. Reppen (Ed.), Analysts at work, (pp. 127-144). Hillsdale, NJ: Analytic Press.
     ■ Piaget, J. (1952). The origin of intelligence in children. New York: International Universities Press. (Originally published in 1936.)
     ■ Piaget, J. (1954). Le langage et les opeґrations intellectuelles. Proble` mes de psycho linguistique. Symposium de l'Association de Psychologie Scientifique de Langue Francёaise. Paris: Presses Universitaires de France.
     ■ Piaget, J. (1977). Problems of equilibration. In H. E. Gruber & J. J. Voneche (Eds.), The essential Piaget (pp. 838-841). London: Routlege & Kegan Paul. (Originally published in 1975 as L'eґquilibration des structures cognitives [Paris: Presses Universitaires de France].)
     ■ Piaget, J., & B. Inhelder. (1973). Memory and intelligence. New York: Basic Books.
     ■ Pinker, S. (1994). The language instinct. New York: Morrow.
     ■ Pinker, S. (1996). Facts about human language relevant to its evolution. In J.-P. Changeux & J. Chavaillon (Eds.), Origins of the human brain. A symposium of the Fyssen foundation (pp. 262-283). Oxford: Clarendon Press. Planck, M. (1949). Scientific autobiography and other papers. F. Gaynor (Trans.). New York: Philosophical Library.
     ■ Planck, M. (1990). Wissenschaftliche Selbstbiographie. W. Berg (Ed.). Halle, Germany: Deutsche Akademie der Naturforscher Leopoldina.
     ■ Plato (1892). Meno. In The Dialogues of Plato (B. Jowett, Trans.; Vol. 2). New York: Clarendon. (Originally published circa 380 B.C.)
     ■ Poincareґ, H. (1913). Mathematical creation. In The foundations of science. G. B. Halsted (Trans.). New York: Science Press.
     ■ Poincareґ, H. (1921). The foundations of science: Science and hypothesis, the value of science, science and method. G. B. Halstead (Trans.). New York: Science Press.
     ■ Poincareґ, H. (1929). The foundations of science: Science and hypothesis, the value of science, science and method. New York: Science Press.
     ■ Poincareґ, H. (1952). Science and method. F. Maitland (Trans.) New York: Dover.
     ■ Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.
     ■ Polanyi, M. (1958). Personal knowledge. London: Routledge & Kegan Paul.
     ■ Popper, K. (1968). Conjectures and refutations: The growth of scientific knowledge. New York: Harper & Row/Basic Books.
     ■ Popper, K., & J. Eccles (1977). The self and its brain. New York: Springer-Verlag.
     ■ Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.
     ■ Putnam, H. (1975). Mind, language and reality: Philosophical papers (Vol. 2). Cambridge: Cambridge University Press.
     ■ Putnam, H. (1987). The faces of realism. LaSalle, IL: Open Court.
     ■ Pylyshyn, Z. W. (1981). The imagery debate: Analog media versus tacit knowledge. In N. Block (Ed.), Imagery (pp. 151-206). Cambridge, MA: MIT Press.
     ■ Pylyshyn, Z. W. (1984). Computation and cognition: Towards a foundation for cog nitive science. Cambridge, MA: MIT Press/Bradford Books.
     ■ Quillian, M. R. (1968). Semantic memory. In M. Minsky (Ed.), Semantic information processing (pp. 216-260). Cambridge, MA: MIT Press.
     ■ Quine, W.V.O. (1960). Word and object. Cambridge, MA: Harvard University Press.
     ■ Rabbitt, P.M.A., & S. Dornic (Eds.). Attention and performance (Vol. 5). London: Academic Press.
     ■ Rawlins, G.J.E. (1997). Slaves of the Machine: The quickening of computer technology. Cambridge, MA: MIT Press/Bradford Books.
     ■ Reid, T. (1970). An inquiry into the human mind on the principles of common sense. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 151-178). New York: Random House/Modern Library.
     ■ Reitman, W. (1970). What does it take to remember? In D. A. Norman (Ed.), Models of human memory (pp. 470-510). London: Academic Press.
     ■ Ricoeur, P. (1974). Structure and hermeneutics. In D. I. Ihde (Ed.), The conflict of interpretations: Essays in hermeneutics (pp. 27-61). Evanston, IL: Northwestern University Press.
     ■ Robinson, D. N. (1986). An intellectual history of psychology. Madison: University of Wisconsin Press.
     ■ Rorty, R. (1979). Philosophy and the mirror of nature. Princeton, NJ: Princeton University Press.
     ■ Rosch, E. (1977). Human categorization. In N. Warren (Ed.), Studies in cross cultural psychology (Vol. 1, pp. 1-49) London: Academic Press.
     ■ Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27-48). Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Rosch, E., & B. B. Lloyd (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Rose, S. (1970). The chemistry of life. Baltimore: Penguin Books.
     ■ Rose, S. (1976). The conscious brain (updated ed.). New York: Random House.
     ■ Rose, S. (1993). The making of memory: From molecules to mind. New York: Anchor Books. (Originally published in 1992)
     ■ Roszak, T. (1994). The cult of information: A neo- Luddite treatise on high- tech, artificial intelligence, and the true art of thinking (2nd ed.). Berkeley: University of California Press.
     ■ Royce, J. R., & W. W. Rozeboom (Eds.) (1972). The psychology of knowing. New York: Gordon & Breach.
     ■ Rumelhart, D. E. (1977). Introduction to human information processing. New York: Wiley.
     ■ Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J. Spiro, B. Bruce & W. F. Brewer (Eds.), Theoretical issues in reading comprehension. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Rumelhart, D. E., & J. L. McClelland (1986). On learning the past tenses of English verbs. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 2). Cambridge, MA: MIT Press.
     ■ Rumelhart, D. E., P. Smolensky, J. L. McClelland & G. E. Hinton (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland, D. E. Rumelhart & the PDP Research Group (Eds.), Parallel Distributed Processing (Vol. 2, pp. 7-57). Cambridge, MA: MIT Press.
     ■ Russell, B. (1927). An outline of philosophy. London: G. Allen & Unwin.
     ■ Russell, B. (1961). History of Western philosophy. London: George Allen & Unwin.
     ■ Russell, B. (1965). How I write. In Portraits from memory and other essays. London: Allen & Unwin.
     ■ Russell, B. (1992). In N. Griffin (Ed.), The selected letters of Bertrand Russell (Vol. 1), The private years, 1884- 1914. Boston: Houghton Mifflin. Ryecroft, C. (1966). Psychoanalysis observed. London: Constable.
     ■ Sagan, C. (1978). The dragons of Eden: Speculations on the evolution of human intel ligence. New York: Ballantine Books.
     ■ Salthouse, T. A. (1992). Expertise as the circumvention of human processing limitations. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.
     ■ Sanford, A. J. (1987). The mind of man: Models of human understanding. New Haven, CT: Yale University Press.
     ■ Sapir, E. (1921). Language. New York: Harcourt, Brace, and World.
     ■ Sapir, E. (1964). Culture, language, and personality. Berkeley: University of California Press. (Originally published in 1941.)
     ■ Sapir, E. (1985). The status of linguistics as a science. In D. G. Mandelbaum (Ed.), Selected writings of Edward Sapir in language, culture and personality (pp. 160166). Berkeley: University of California Press. (Originally published in 1929).
     ■ Scardmalia, M., & C. Bereiter (1992). Literate expertise. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.
     ■ Schafer, R. (1954). Psychoanalytic interpretation in Rorschach testing. New York: Grune & Stratten.
     ■ Schank, R. C. (1973). Identification of conceptualizations underlying natural language. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 187-248). San Francisco: W. H. Freeman.
     ■ Schank, R. C. (1976). The role of memory in language processing. In C. N. Cofer (Ed.), The structure of human memory. (pp. 162-189) San Francisco: W. H. Freeman.
     ■ Schank, R. C. (1986). Explanation patterns: Understanding mechanically and creatively. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Schank, R. C., & R. P. Abelson (1977). Scripts, plans, goals, and understanding. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ SchroЁdinger, E. (1951). Science and humanism. Cambridge: Cambridge University Press.
     ■ Searle, J. R. (1981a). Minds, brains, and programs. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 282-306). Cambridge, MA: MIT Press.
     ■ Searle, J. R. (1981b). Minds, brains and programs. In D. Hofstadter & D. Dennett (Eds.), The mind's I (pp. 353-373). New York: Basic Books.
     ■ Searle, J. R. (1983). Intentionality. New York: Cambridge University Press.
     ■ Serres, M. (1982). The origin of language: Biology, information theory, and thermodynamics. M. Anderson (Trans.). In J. V. Harari & D. F. Bell (Eds.), Hermes: Literature, science, philosophy (pp. 71-83). Baltimore: Johns Hopkins University Press.
     ■ Simon, H. A. (1966). Scientific discovery and the psychology of problem solving. In R. G. Colodny (Ed.), Mind and cosmos: Essays in contemporary science and philosophy (pp. 22-40). Pittsburgh: University of Pittsburgh Press.
     ■ Simon, H. A. (1979). Models of thought. New Haven, CT: Yale University Press.
     ■ Simon, H. A. (1989). The scientist as a problem solver. In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert Simon. Hillsdale, N.J.: Lawrence Erlbaum Associates.
     ■ Simon, H. A., & C. Kaplan (1989). Foundations of cognitive science. In M. Posner (Ed.), Foundations of cognitive science (pp. 1-47). Cambridge, MA: MIT Press.
     ■ Simonton, D. K. (1988). Creativity, leadership and chance. In R. J. Sternberg (Ed.), The nature of creativity. Cambridge: Cambridge University Press.
     ■ Skinner, B. F. (1974). About behaviorism. New York: Knopf.
     ■ Smith, E. E. (1988). Concepts and thought. In J. Sternberg & E. E. Smith (Eds.), The psychology of human thought (pp. 19-49). Cambridge: Cambridge University Press.
     ■ Smith, E. E. (1990). Thinking: Introduction. In D. N. Osherson & E. E. Smith (Eds.), Thinking. An invitation to cognitive science. (Vol. 3, pp. 1-2). Cambridge, MA: MIT Press.
     ■ Socrates. (1958). Meno. In E. H. Warmington & P. O. Rouse (Eds.), Great dialogues of Plato W.H.D. Rouse (Trans.). New York: New American Library. (Original publication date unknown.)
     ■ Solso, R. L. (1974). Theories of retrieval. In R. L. Solso (Ed.), Theories in cognitive psychology. Potomac, MD: Lawrence Erlbaum Associates.
     ■ Spencer, H. (1896). The principles of psychology. New York: Appleton-CenturyCrofts.
     ■ Steiner, G. (1975). After Babel: Aspects of language and translation. New York: Oxford University Press.
     ■ Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning. Hillsdale, NJ: Lawrence Erlbaum Associates.
     ■ Sternberg, R. J. (1994). Intelligence. In R. J. Sternberg, Thinking and problem solving. San Diego: Academic Press.
     ■ Sternberg, R. J., & J. E. Davidson (1985). Cognitive development in gifted and talented. In F. D. Horowitz & M. O'Brien (Eds.), The gifted and talented (pp. 103-135). Washington, DC: American Psychological Association.
     ■ Storr, A. (1993). The dynamics of creation. New York: Ballantine Books. (Originally published in 1972.)
     ■ Stumpf, S. E. (1994). Philosophy: History and problems (5th ed.). New York: McGraw-Hill.
     ■ Sulloway, F. J. (1996). Born to rebel: Birth order, family dynamics, and creative lives. New York: Random House/Vintage Books.
     ■ Thorndike, E. L. (1906). Principles of teaching. New York: A. G. Seiler.
     ■ Thorndike, E. L. (1970). Animal intelligence: Experimental studies. Darien, CT: Hafner Publishing Co. (Originally published in 1911.)
     ■ Titchener, E. B. (1910). A textbook of psychology. New York: Macmillan.
     ■ Titchener, E. B. (1914). A primer of psychology. New York: Macmillan.
     ■ Toulmin, S. (1957). The philosophy of science. London: Hutchinson.
     ■ Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organisation of memory. London: Academic Press.
     ■ Turing, A. (1946). In B. E. Carpenter & R. W. Doran (Eds.), ACE reports of 1946 and other papers. Cambridge, MA: MIT Press.
     ■ Turkle, S. (1984). Computers and the second self: Computers and the human spirit. New York: Simon & Schuster.
     ■ Tyler, S. A. (1978). The said and the unsaid: Mind, meaning, and culture. New York: Academic Press.
     ■ van Heijenoort (Ed.) (1967). From Frege to Goedel. Cambridge: Harvard University Press.
     ■ Varela, F. J. (1984). The creative circle: Sketches on the natural history of circularity. In P. Watzlawick (Ed.), The invented reality (pp. 309-324). New York: W. W. Norton.
     ■ Voltaire (1961). On the Penseґs of M. Pascal. In Philosophical letters (pp. 119-146). E. Dilworth (Trans.). Indianapolis: Bobbs-Merrill.
     ■ Wagman, M. (1997a). Cognitive science and the symbolic operations of human and artificial intelligence: Theory and research into the intellective processes. Westport, CT: Praeger.
     ■ Wagman, M. (1997b). The general unified theory of intelligence: Central conceptions and specific application to domains of cognitive science. Westport, CT: Praeger.
     ■ Wagman, M. (1998a). Cognitive science and the mind- body problem: From philosophy to psychology to artificial intelligence to imaging of the brain. Westport, CT: Praeger.
     ■ Wagman, M. (1999). The human mind according to artificial intelligence: Theory, re search, and implications. Westport, CT: Praeger.
     ■ Wall, R. (1972). Introduction to mathematical linguistics. Englewood Cliffs, NJ: Prentice-Hall.
     ■ Wallas, G. (1926). The Art of Thought. New York: Harcourt, Brace & Co.
     ■ Wason, P. (1977). Self contradictions. In P. Johnson-Laird & P. Wason (Eds.), Thinking: Readings in cognitive science. Cambridge: Cambridge University Press.
     ■ Wason, P. C., & P. N. Johnson-Laird. (1972). Psychology of reasoning: Structure and content. Cambridge, MA: Harvard University Press.
     ■ Watson, J. (1930). Behaviorism. New York: W. W. Norton.
     ■ Watzlawick, P. (1984). Epilogue. In P. Watzlawick (Ed.), The invented reality. New York: W. W. Norton, 1984.
     ■ Weinberg, S. (1977). The first three minutes: A modern view of the origin of the uni verse. New York: Basic Books.
     ■ Weisberg, R. W. (1986). Creativity: Genius and other myths. New York: W. H. Freeman.
     ■ Weizenbaum, J. (1976). Computer power and human reason: From judgment to cal culation. San Francisco: W. H. Freeman.
     ■ Wertheimer, M. (1945). Productive thinking. New York: Harper & Bros.
     ■ Whitehead, A. N. (1925). Science and the modern world. New York: Macmillan.
     ■ Whorf, B. L. (1956). In J. B. Carroll (Ed.), Language, thought and reality: Selected writings of Benjamin Lee Whorf. Cambridge, MA: MIT Press.
     ■ Whyte, L. L. (1962). The unconscious before Freud. New York: Anchor Books.
     ■ Wiener, N. (1954). The human use of human beings. Boston: Houghton Mifflin.
     ■ Wiener, N. (1964). God & Golem, Inc.: A comment on certain points where cybernetics impinges on religion. Cambridge, MA: MIT Press.
     ■ Winograd, T. (1972). Understanding natural language. New York: Academic Press.
     ■ Winston, P. H. (1987). Artificial intelligence: A perspective. In E. L. Grimson & R. S. Patil (Eds.), AI in the 1980s and beyond (pp. 1-12). Cambridge, MA: MIT Press.
     ■ Winston, P. H. (Ed.) (1975). The psychology of computer vision. New York: McGrawHill.
     ■ Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.
     ■ Wittgenstein, L. (1958). The blue and brown books. New York: Harper Colophon.
     ■ Woods, W. A. (1975). What's in a link: Foundations for semantic networks. In D. G. Bobrow & A. Collins (Eds.), Representations and understanding: Studies in cognitive science (pp. 35-84). New York: Academic Press.
     ■ Woodworth, R. S. (1938). Experimental psychology. New York: Holt; London: Methuen (1939).
     ■ Wundt, W. (1904). Principles of physiological psychology (Vol. 1). E. B. Titchener (Trans.). New York: Macmillan.
     ■ Wundt, W. (1907). Lectures on human and animal psychology. J. E. Creighton & E. B. Titchener (Trans.). New York: Macmillan.
     ■ Young, J. Z. (1978). Programs of the brain. New York: Oxford University Press.
     ■ Ziman, J. (1978). Reliable knowledge: An exploration of the grounds for belief in science. Cambridge: Cambridge University Press.

    Historical dictionary of quotations in cognitive science > Bibliography

  • 2 Knowledge

       It is indeed an opinion strangely prevailing amongst men, that houses, mountains, rivers, and, in a word, all sensible objects, have an existence, natural or real, distinct from their being perceived by the understanding. But, with how great an assurance and acquiescence soever this principle may be entertained in the world, yet whoever shall find in his heart to call it into question may, if I mistake not, perceive it to involve a manifest contradiction. For, what are the forementioned objects but things we perceive by sense? and what do we perceive besides our own ideas or sensations? and is it not plainly repugnant that any one of these, or any combination of them, should exist unperceived? (Berkeley, 1996, Pt. I, No. 4, p. 25)
       It seems to me that the only objects of the abstract sciences or of demonstration are quantity and number, and that all attempts to extend this more perfect species of knowledge beyond these bounds are mere sophistry and illusion. As the component parts of quantity and number are entirely similar, their relations become intricate and involved; and nothing can be more curious, as well as useful, than to trace, by a variety of mediums, their equality or inequality, through their different appearances.
       But as all other ideas are clearly distinct and different from each other, we can never advance farther, by our utmost scrutiny, than to observe this diversity, and, by an obvious reflection, pronounce one thing not to be another. Or if there be any difficulty in these decisions, it proceeds entirely from the undeterminate meaning of words, which is corrected by juster definitions. That the square of the hypotenuse is equal to the squares of the other two sides cannot be known, let the terms be ever so exactly defined, without a train of reasoning and enquiry. But to convince us of this proposition, that where there is no property, there can be no injustice, it is only necessary to define the terms, and explain injustice to be a violation of property. This proposition is, indeed, nothing but a more imperfect definition. It is the same case with all those pretended syllogistical reasonings, which may be found in every other branch of learning, except the sciences of quantity and number; and these may safely, I think, be pronounced the only proper objects of knowledge and demonstration. (Hume, 1975, Sec. 12, Pt. 3, pp. 163-165)
       Our knowledge springs from two fundamental sources of the mind; the first is the capacity of receiving representations (the ability to receive impressions), the second is the power to know an object through these representations (spontaneity in the production of concepts).
       Through the first, an object is given to us; through the second, the object is thought in relation to that representation.... Intuition and concepts constitute, therefore, the elements of all our knowledge, so that neither concepts without intuition in some way corresponding to them, nor intuition without concepts, can yield knowledge. Both may be either pure or empirical.... Pure intuitions or pure concepts are possible only a priori; empirical intuitions and empirical concepts only a posteriori. If the receptivity of our mind, its power of receiving representations in so far as it is in any way affected, is to be called "sensibility," then the mind's power of producing representations from itself, the spontaneity of knowledge, should be called "understanding." Our nature is so constituted that our intuitions can never be other than sensible; that is, it contains only the mode in which we are affected by objects. The faculty, on the other hand, which enables us to think the object of sensible intuition is the understanding.... Without sensibility, no object would be given to us; without understanding, no object would be thought. Thoughts without content are empty; intuitions without concepts are blind. It is therefore just as necessary to make our concepts sensible, that is, to add the object to them in intuition, as to make our intuitions intelligible, that is to bring them under concepts. These two powers or capacities cannot exchange their functions. The understanding can intuit nothing, the senses can think nothing. Only through their union can knowledge arise. (Kant, 1933, Sec. 1, Pt. 2, B74-75 [p. 92])
       Metaphysics, as a natural disposition of Reason is real, but it is also, in itself, dialectical and deceptive.... Hence to attempt to draw our principles from it, and in their employment to follow this natural but none the less fallacious illusion can never produce science, but only an empty dialectical art, in which one school may indeed outdo the other, but none can ever attain a justifiable and lasting success. In order that, as a science, it may lay claim not merely to deceptive persuasion, but to insight and conviction, a Critique of Reason must exhibit in a complete system the whole stock of conceptions a priori, arranged according to their different sources-the Sensibility, the understanding, and the Reason; it must present a complete table of these conceptions, together with their analysis and all that can be deduced from them, but more especially the possibility of synthetic knowledge a priori by means of their deduction, the principles of its use, and finally, its boundaries....
       This much is certain: he who has once tried criticism will be sickened for ever of all the dogmatic trash he was compelled to content himself with before, because his Reason, requiring something, could find nothing better for its occupation. Criticism stands to the ordinary school metaphysics exactly in the same relation as chemistry to alchemy, or as astron omy to fortune-telling astrology. I guarantee that no one who has comprehended and thought out the conclusions of criticism, even in these Prolegomena, will ever return to the old sophistical pseudo-science. He will rather look forward with a kind of pleasure to a metaphysics, certainly now within his power, which requires no more preparatory discoveries, and which alone can procure for reason permanent satisfaction. (Kant, 1891, pp. 115-116)
       Knowledge is only real and can only be set forth fully in the form of science, in the form of system. Further, a so-called fundamental proposition or first principle of philosophy, even if it is true, it is yet none the less false, just because and in so far as it is merely a fundamental proposition, merely a first principle. It is for that reason easily refuted. The refutation consists in bringing out its defective character; and it is defective because it is merely the universal, merely a principle, the beginning. If the refutation is complete and thorough, it is derived and developed from the nature of the principle itself, and not accomplished by bringing in from elsewhere other counter-assurances and chance fancies. It would be strictly the development of the principle, and thus the completion of its deficiency, were it not that it misunderstands its own purport by taking account solely of the negative aspect of what it seeks to do, and is not conscious of the positive character of its process and result. The really positive working out of the beginning is at the same time just as much the very reverse: it is a negative attitude towards the principle we start from. Negative, that is to say, in its one-sided form, which consists in being primarily immediate, a mere purpose. It may therefore be regarded as a refutation of what constitutes the basis of the system; but more correctly it should be looked at as a demonstration that the basis or principle of the system is in point of fact merely its beginning. (Hegel, 1910, pp. 21-22)
       Knowledge, action, and evaluation are essentially connected. The primary and pervasive significance of knowledge lies in its guidance of action: knowing is for the sake of doing. And action, obviously, is rooted in evaluation. For a being which did not assign comparative values, deliberate action would be pointless; and for one which did not know, it would be impossible. Conversely, only an active being could have knowledge, and only such a being could assign values to anything beyond his own feelings. A creature which did not enter into the process of reality to alter in some part the future content of it, could apprehend a world only in the sense of intuitive or esthetic contemplation; and such contemplation would not possess the significance of knowledge but only that of enjoying and suffering. (Lewis, 1946, p. 1)
       "Evolutionary epistemology" is a branch of scholarship that applies the evolutionary perspective to an understanding of how knowledge develops. Knowledge always involves getting information. The most primitive way of acquiring it is through the sense of touch: amoebas and other simple organisms know what happens around them only if they can feel it with their "skins." The knowledge such an organism can have is strictly about what is in its immediate vicinity. After a huge jump in evolution, organisms learned to find out what was going on at a distance from them, without having to actually feel the environment. This jump involved the development of sense organs for processing information that was farther away. For a long time, the most important sources of knowledge were the nose, the eyes, and the ears. The next big advance occurred when organisms developed memory. Now information no longer needed to be present at all, and the animal could recall events and outcomes that happened in the past. Each one of these steps in the evolution of knowledge added important survival advantages to the species that was equipped to use it.
       Then, with the appearance in evolution of humans, an entirely new way of acquiring information developed. Up to this point, the processing of information was entirely intrasomatic.... But when speech appeared (and even more powerfully with the invention of writing), information processing became extrasomatic. After that point knowledge did not have to be stored in the genes, or in the memory traces of the brain; it could be passed on from one person to another through words, or it could be written down and stored on a permanent substance like stone, paper, or silicon chips-in any case, outside the fragile and impermanent nervous system. (Csikszentmihalyi, 1993, pp. 56-57)

    Historical dictionary of quotations in cognitive science > Knowledge

  • 3 Grammar

       I think that the failure to offer a precise account of the notion "grammar" is not just a superficial defect in linguistic theory that can be remedied by adding one more definition. It seems to me that until this notion is clarified, no part of linguistic theory can achieve anything like a satisfactory development.... I have been discussing a grammar of a particular language here as analogous to a particular scientific theory, dealing with its subject matter (the set of sentences of this language) much as embryology or physics deals with its subject matter. (Chomsky, 1964, p. 213)
       Obviously, every speaker of a language has mastered and internalized a generative grammar that expresses his knowledge of his language. This is not to say that he is aware of the rules of grammar or even that he can become aware of them, or that his statements about his intuitive knowledge of his language are necessarily accurate. (Chomsky, 1965, p. 8)
       Much effort has been devoted to showing that the class of possible transformations can be substantially reduced without loss of descriptive power through the discovery of quite general conditions that all such rules and the representations they operate on and form must meet.... [The] transformational rules, at least for a substantial core grammar, can be reduced to the single rule, "Move alpha" (that is, "move any category anywhere"). (Mehler, Walker & Garrett, 1982, p. 21)
       4) The Relationship of Transformational Grammar to Semantics and to Human Performance
       he implications of assuming a semantic memory for what we might call "generative psycholinguistics" are: that dichotomous judgments of semantic well-formedness versus anomaly are not essential or inherent to language performance; that the transformational component of a grammar is the part most relevant to performance models; that a generative grammar's role should be viewed as restricted to language production, whereas sentence understanding should be treated as a problem of extracting a cognitive representation of a text's message; that until some theoretical notion of cognitive representation is incorporated into linguistic conceptions, they are unlikely to provide either powerful language-processing programs or psychologically relevant theories.
       Although these implications conflict with the way others have viewed the relationship of transformational grammars to semantics and to human performance, they do not eliminate the importance of such grammars to psychologists, an importance stressed in, and indeed largely created by, the work of Chomsky. It is precisely because of a growing interdependence between such linguistic theory and psychological performance models that their relationship needs to be clarified. (Quillian, 1968, p. 260)
       here are some terminological distinctions that are crucial to explain, or else confusions can easily arise. In the formal study of grammar, a language is defined as a set of sentences, possibly infinite, where each sentence is a string of symbols or words. One can think of each sentence as having several representations linked together: one for its sound pattern, one for its meaning, one for the string of words constituting it, possibly others for other data structures such as the "surface structure" and "deep structure" that are held to mediate the mapping between sound and meaning. Because no finite system can store an infinite number of sentences, and because humans in particular are clearly not pullstring dolls that emit sentences from a finite stored list, one must explain human language abilities by imputing to them a grammar, which in the technical sense is a finite rule system, or programme, or circuit design, capable of generating and recognizing the sentences of a particular language. This "mental grammar" or "psychogrammar" is the neural system that allows us to speak and understand the possible word sequences of our native tongue. A grammar for a specific language is obviously acquired by a human during childhood, but there must be neural circuitry that actually carries out the acquisition process in the child, and this circuitry may be called the language faculty or language acquisition device. An important part of the language faculty is universal grammar, an implementation of a set of principles or constraints that govern the possible form of any human grammar. (Pinker, 1996, p. 263)
       A grammar of language L is essentially a theory of L. Any scientific theory is based on a finite number of observations, and it seeks to relate the observed phenomena and to predict new phenomena by constructing general laws in terms of hypothetical constructs.... Similarly a grammar of English is based on a finite corpus of utterances (observations), and it will contain certain grammatical rules (laws) stated in terms of the particular phonemes, phrases, etc., of English (hypothetical constructs). These rules express structural relations among the sentences of the corpus and the infinite number of sentences generated by the grammar beyond the corpus (predictions). (Chomsky, 1957, p. 49)

    Historical dictionary of quotations in cognitive science > Grammar

  • 4 Concepts

       From a psychological perspective, concepts are mental representations of classes (e.g., one's beliefs about the class of dogs or tables), and their most salient function is to promote cognitive economy.... By partitioning the world into classes, we decrease the amount of information we must perceive, learn, remember, communicate, and reason about. Thus, if we had no concepts, we would have to refer to each individual entity by its own name; every different table, for example, would be denoted by a different word. The mental lexicon required would be so enormous that communication as we know it might be impossible. Other mental functions might collapse under the sheer number of entities we would have to keep track of.
       Another important function of concepts is that they enable us to go beyond the information given.... When we come across an object, say a wolf, we have direct knowledge only of its appearance. It is essential that we go beyond appearances and bring to bear other knowledge that we have, such as our belief that wolves can bite and inflict severe injury. Concepts are our means of linking perceptual and nonperceptual information. We use a perceptual description of the creature in front of us to access the concept wolf and then use our nonperceptual beliefs to direct our behavior, that is, run. Concepts, then, are recognition devices; they serve as entry points into our knowledge stores and provide us with expectations that we can use to guide our actions.
       A third important function of concepts is that they can be combined to form complex concepts and thoughts. Stoves and burn are two simple concepts; Stoves can burn is a full-fledged thought. Presumably our understanding of this thought, and of complex concepts in general, is based on our understanding of the constituent concepts. (Smith, 1988, pp. 19-20)
       The concept may be a butterfly. It may be a person he has known. It may be an animal, a city, a type of action, or a quality. Each concept calls for a name. These names are wanted for what may be a noun or a verb, an adjective or an adverb. Concepts of this type have been formed gradually over the years from childhood on. Each time a thing is seen or heard or experienced, the individual has a perception of it. A part of that perception comes from his own concomitant interpretation. Each successive perception forms and probably alters the permanent concept. And words are acquired gradually, also, and deposited somehow in the treasure-house of word memory.... Words are often acquired simultaneously with the concepts.... A little boy may first see a butterfly fluttering from flower to flower in a meadow. Later he sees them on the wing or in pictures, many times. On each occasion he adds to his conception of butterfly.
       It becomes a generalization from many particulars. He builds up a concept of a butterfly which he can remember and summon at will, although when he comes to manhood, perhaps, he can recollect none of the particular butterflies of past experience.
       The same is true of the sequence of sound that makes up a melody. He remembers it after he has forgotten each of the many times he heard or perhaps sang or played it. The same is true of colours. He acquires, quite quickly, the concept of lavender, although all the objects of which he saw the colour have faded beyond the frontier of voluntary recall. The same is true of the generalization he forms of an acquaintance. Later on he can summon his concept of the individual without recalling their many meetings. (Penfield, 1959, pp. 228-229)

    Historical dictionary of quotations in cognitive science > Concepts

  • 5 Nature

       To Newtonians, each question had its singular answer, one that would remain the same no matter who asked it, or why. But now, the uncertainty that undercuts every measurement of some fact in the real world compels the observer to choose which question to ask, which aspect of a phenomenon to study.
       The necessity of choice became overwhelmingly apparent when Heisenberg elevated uncertainty to a principle in quantum mechanics in 1927, having recognized that on the subatomic level the observer had to emphasize only one of a pair of properties to study at any one time. In one of the prominent interpretations of quantum mechanics, the idea took on a larger meaning: that in choosing what to study, the scientist in effect creates the object of his inquiry.... The impossibility of constructing a complete, accurate quantitative description of a complex system forces observers to pick which aspects of the system they most wish to understand....
       What one studies from among this wealth of choice depends on what one wants to know; the questions create-or at least determine-the range of possible answers. No such answer can be completely "true": instead of saying "This is what nature is like," they can claim only, "This is what nature seems like from here"-a vastly diminished claim from that of Newton. The critical issue raised by such subjectivity is how to decide what value each partial answer has, what connection it actually makes between the real world and our understanding of it. The object of study, the focus of much of modern science, has therefore shifted inward, to examine not nature itself but rather to study the abstract representations of nature, the choices made of what to leave in and what to drop out of any given study. (Levenson, 1995, pp. 228-229)

    Historical dictionary of quotations in cognitive science > Nature

  • 6 Philosophy

       And what I believe to be more important here is that I find in myself an infinity of ideas of certain things which cannot be assumed to be pure nothingness, even though they may have perhaps no existence outside of my thought. These things are not figments of my imagination, even though it is within my power to think of them or not to think of them; on the contrary, they have their own true and immutable natures. Thus, for example, when I imagine a triangle, even though there may perhaps be no such figure anywhere in the world outside of my thought, nor ever have been, nevertheless the figure cannot help having a certain determinate nature... or essence, which is immutable and eternal, which I have not invented and which does not in any way depend upon my mind. (Descartes, 1951, p. 61)
       Let us console ourselves for not knowing the possible connections between a spider and the rings of Saturn, and continue to examine what is within our reach. (Voltaire, 1961, p. 144)
       As modern physics started with the Newtonian revolution, so modern philosophy starts with what one might call the Cartesian Catastrophe. The catastrophe consisted in the splitting up of the world into the realms of matter and mind, and the identification of "mind" with conscious thinking. The result of this identification was the shallow rationalism of l'esprit Cartesien, and an impoverishment of psychology which it took three centuries to remedy even in part. (Koestler, 1964, p. 148)
       It has been made of late a reproach against natural philosophy that it has struck out on a path of its own, and has separated itself more and more widely from the other sciences which are united by common philological and historical studies. The opposition has, in fact, been long apparent, and seems to me to have grown up mainly under the influence of the Hegelian philosophy, or, at any rate, to have been brought out into more distinct relief by that philosophy.... The sole object of Kant's "Critical Philosophy" was to test the sources and the authority of our knowledge, and to fix a definite scope and standard for the researches of philosophy, as compared with other sciences.... [But Hegel's] "Philosophy of Identity" was bolder. It started with the hypothesis that not only spiritual phenomena, but even the actual world-nature, that is, and man-were the result of an act of thought on the part of a creative mind, similar, it was supposed, in kind to the human mind.... The philosophers accused the scientific men of narrowness; the scientific men retorted that the philosophers were crazy. And so it came about that men of science began to lay some stress on the banishment of all philosophic influences from their work; while some of them, including men of the greatest acuteness, went so far as to condemn philosophy altogether, not merely as useless, but as mischievous dreaming. Thus, it must be confessed, not only were the illegitimate pretensions of the Hegelian system to subordinate to itself all other studies rejected, but no regard was paid to the rightful claims of philosophy, that is, the criticism of the sources of cognition, and the definition of the functions of the intellect. (Helmholz, quoted in Dampier, 1966, pp. 291-292)
       Philosophy remains true to its classical tradition by renouncing it. (Habermas, 1972, p. 317)
       I have not attempted... to put forward any grand view of the nature of philosophy; nor do I have any such grand view to put forth if I would. It will be obvious that I do not agree with those who see philosophy as the history of "howlers" and progress in philosophy as the debunking of howlers. It will also be obvious that I do not agree with those who see philosophy as the enterprise of putting forward a priori truths about the world.... I see philosophy as a field which has certain central questions, for example, the relation between thought and reality.... It seems obvious that in dealing with these questions philosophers have formulated rival research programs, that they have put forward general hypotheses, and that philosophers within each major research program have modified their hypotheses by trial and error, even if they sometimes refuse to admit that that is what they are doing. To that extent philosophy is a "science." To argue about whether philosophy is a science in any more serious sense seems to me to be hardly a useful occupation.... It does not seem to me important to decide whether science is philosophy or philosophy is science as long as one has a conception of both that makes both essential to a responsible view of the world and of man's place in it. (Putnam, 1975, p. xvii)
       What can philosophy contribute to solving the problem of the relation [of] mind to body? Twenty years ago, many English-speaking philosophers would have answered: "Nothing beyond an analysis of the various mental concepts." If we seek knowledge of things, they thought, it is to science that we must turn. Philosophy can only cast light upon our concepts of those things.
       This retreat from things to concepts was not undertaken lightly. Ever since the seventeenth century, the great intellectual fact of our culture has been the incredible expansion of knowledge both in the natural and in the rational sciences (mathematics, logic).
       The success of science created a crisis in philosophy. What was there for philosophy to do? Hume had already perceived the problem in some degree, and so surely did Kant, but it was not until the twentieth century, with the Vienna Circle and with Wittgenstein, that the difficulty began to weigh heavily. Wittgenstein took the view that philosophy could do no more than strive to undo the intellectual knots it itself had tied, so achieving intellectual release, and even a certain illumination, but no knowledge. A little later, and more optimistically, Ryle saw a positive, if reduced role, for philosophy in mapping the "logical geography" of our concepts: how they stood to each other and how they were to be analyzed....
       Since that time, however, philosophers in the "analytic" tradition have swung back from Wittgensteinian and even Rylean pessimism to a more traditional conception of the proper role and tasks of philosophy. Many analytic philosophers now would accept the view that the central task of philosophy is to give an account, or at least play a part in giving an account, of the most general nature of things and of man. (Armstrong, 1990, pp. 37-38)
       8) Philosophy's Evolving Engagement with Artificial Intelligence and Cognitive Science
       In the beginning, the nature of philosophy's engagement with artificial intelligence and cognitive science was clear enough. The new sciences of the mind were to provide the long-awaited vindication of the most potent dreams of naturalism and materialism. Mind would at last be located firmly within the natural order. We would see in detail how the most perplexing features of the mental realm could be supported by the operations of solely physical laws upon solely physical stuff. Mental causation (the power of, e.g., a belief to cause an action) would emerge as just another species of physical causation. Reasoning would be understood as a kind of automated theorem proving. And the key to both was to be the depiction of the brain as the implementation of multiple higher level programs whose task was to manipulate and transform symbols or representations: inner items with one foot in the physical (they were realized as brain states) and one in the mental (they were bearers of contents, and their physical gymnastics were cleverly designed to respect semantic relationships such as truth preservation). (A. Clark, 1996, p. 1)
       Socrates of Athens famously declared that "the unexamined life is not worth living," and his motto aptly explains the impulse to philosophize. Taking nothing for granted, philosophy probes and questions the fundamental presuppositions of every area of human inquiry.... [P]art of the job of the philosopher is to keep at a certain critical distance from current doctrines, whether in the sciences or the arts, and to examine instead how the various elements in our world-view clash, or fit together. Some philosophers have tried to incorporate the results of these inquiries into a grand synoptic view of the nature of reality and our human relationship to it. Others have mistrusted system-building, and seen their primary role as one of clarifications, or the removal of obstacles along the road to truth. But all have shared the Socratic vision of using the human intellect to challenge comfortable preconceptions, insisting that every aspect of human theory and practice be subjected to continuing critical scrutiny....
       Philosophy is, of course, part of a continuing tradition, and there is much to be gained from seeing how that tradition originated and developed. But the principal object of studying the materials in this book is not to pay homage to past genius, but to enrich one's understanding of central problems that are as pressing today as they have always been-problems about knowledge, truth and reality, the nature of the mind, the basis of right action, and the best way to live. These questions help to mark out the territory of philosophy as an academic discipline, but in a wider sense they define the human predicament itself; they will surely continue to be with us for as long as humanity endures. (Cottingham, 1996, pp. xxi-xxii)
       In his study of ancient Greek culture, The Birth of Tragedy, Nietzsche drew what would become a famous distinction, between the Dionysian spirit, the untamed spirit of art and creativity, and the Apollonian, that of reason and self-control. The story of Greek civilization, and all civilizations, Nietzsche implied, was the gradual victory of Apollonian man, with his desire for control over nature and himself, over Dionysian man, who survives only in myth, poetry, music, and drama. Socrates and Plato had attacked the illusions of art as unreal, and had overturned the delicate cultural balance by valuing only man's critical, rational, and controlling consciousness while denigrating his vital life instincts as irrational and base. The result of this division is "Alexandrian man," the civilized and accomplished Greek citizen of the later ancient world, who is "equipped with the greatest forces of knowledge" but in whom the wellsprings of creativity have dried up. (Herman, 1997, pp. 95-96)

    Historical dictionary of quotations in cognitive science > Philosophy

См. также в других словарях:

  • Representations — Infobox Magazine title = Representations image size = 100px image caption = editor = Catherine Gallagher Thomas Laqueur editor title = Co chair frequency = quarterly circulation = category = Journal company = University of California Press… …   Wikipedia

  • And-inverter graph — An and inverter graph (AIG) is a directed, acyclic graph that represents a structural implementation of the logical functionality of a circuit or network. An AIG consists of two input nodes representing logical conjunction, terminal nodes labeled …   Wikipedia

  • religious symbolism and iconography — Introduction       respectively, the basic and often complex artistic forms and gestures used as a kind of key to convey religious concepts and the visual, auditory, and kinetic representations of religious ideas and events. Symbolism and… …   Universalium

  • Multiple representations (mathematics education) — Multiple representations are ways to symbolize, to describe and to refer to the same mathematical entity. They are used to understand, to develop, and to communicate different mathematical features of the same object or operation, as well as… …   Wikipedia

  • Aristotle: Aesthetics and philosophy of mind — David Gallop AESTHETICS Aesthetics, as that field is now understood, does not form the subjectmatter of any single Aristotelian work. No treatise is devoted to such topics as the essential nature of a work of art, the function of art in general,… …   History of philosophy

  • Hegel’s logic and philosophy of mind — Willem deVries LOGIC AND MIND IN HEGEL’S PHILOSOPHY Hegel is above all a systematic philosopher. Awe inspiring in its scope, his philosophy left no subject untouched. Logic provides the central, unifying framework as well as the general… …   History of philosophy

  • Anthropology and Archaeology — ▪ 2009 Introduction Anthropology       Among the key developments in 2008 in the field of physical anthropology was the discovery by a large interdisciplinary team of Spanish and American scientists in northern Spain of a partial mandible (lower… …   Universalium

  • Aufklärung (The German) and British philosophy — The German Aufklärung and British philosophy Manfred Kuehn INTRODUCTION The German Enlightenment was not an isolated phenomenon.1 It was closely connected with developments in other European countries and in North America. Like the thinkers in… …   History of philosophy

  • Fichte and Schilling: the Jena period — Daniel Breazeale FROM KANT TO FICHTE An observer of the German philosophical landscape of the 1790s would have surveyed a complex and confusing scene, in which individuals tended to align themselves with particular factions or “schools,”… …   History of philosophy

  • HISTORICAL SURVEY: THE STATE AND ITS ANTECEDENTS (1880–2006) — Introduction It took the new Jewish nation about 70 years to emerge as the State of Israel. The immediate stimulus that initiated the modern return to Zion was the disappointment, in the last quarter of the 19th century, of the expectation that… …   Encyclopedia of Judaism

  • Eigenvalues and eigenvectors — For more specific information regarding the eigenvalues and eigenvectors of matrices, see Eigendecomposition of a matrix. In this shear mapping the red arrow changes direction but the blue arrow does not. Therefore the blue arrow is an… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»